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ABSTRACT 

The education sector is a multidimensional and complex system, affected by 

numerous internal and external factors. Institutional planning in such a speculative 

environment demands appropriate tools, especially when forecasting and 

modeling the future is necessary. Predictive analytics can help executives to 

identify the likelihood of future outcomes of their institutions based on past and 

current data, as well as to consider internal and external influencing factors. Such 

analyses can utilize several approaches varying from simple statistical techniques, 

data mining, and predictive modeling tools to advanced machine learning 

algorithms. Selecting an appropriate yet effective model for two samples of 

enrolment planning is the goal of the current paper. The Markov Chain is a well-

known technique to forecast stochastic time-series data and is used in the current 

research. The suggested model is a homogenous Markov Chain which is applied 

to modeling Course-enrolment. Generating the Transitional probability matrix is 

the core concept of the model. To achieve this, analyzing the historical data to 

identify all possible valid transitional states is the first essential phase. Calculating 

transitional probabilities among all states is the second major phase. We have 

utilized a frequentist approach to achieve the transitional probabilities. The rest is 

about computing the likelihood of possible future states by implementing different 

scenarios by way of tweaking the elements of the primary Transitional probability 

matrix and analyzing the results. In addition to its ability to forecast stochastic 

processes, another advantage of a homogenous Markov model is its simplicity in 

implementation.  

Keywords: Student headcount prediction, Enrolment projection, Transition 

probability matrix, Predictive analytics, Homogeneous Markov Chain. 
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Introduction 

International students are a significant cohort in major Australian institutions 

(DEFAT 2019). Respecting that fact, the quality and quantity growth of institutions 

in South East Asian countries will finally coincide with significant fluctuation in the 

demographics of student enrolment in Australian universities. From this will emerge 

the importance of predictive analyses for strategic and financial planning. This 

paper introduces a Markov-based model for forecasting institutional enrolment 

based on historical time-series data. 

The result of recording sequential observations in a time sequence is called “time 

series”. With this definition, a significant number of data sets can be categorized as 

time series and is the reason why analyzing time series data is important in a wide 

variety of disciplines such as engineering, economics, and business. The number of 

sick-leave requests in each month, the number of bottles of wine sold in a store 

(over any period), or the number of student enrolments in each semester, regardless 

of their differences in the context of data, are similar in this concept: all are 

regularly recordable in a time series.  

Forecasting or estimating the future state is an integral part of time series analyses 

(Box & Ljung 2015). The observations in equal periods or equispaced intervals 

generate a sequence of discrete data in a balanced time interval:            

          (current time). This characteristic brings the concept of predictability for 

the time          etc. and it can be considered as an opportunity for more 

accurate planning and more effective strategies which can be crucial. 

Mathematical modeling of physical phenomena is a well-established approach to 

study the dynamics of a system. If the mathematical model can calculate the exact 

components of the phenomenon and enable us to predict the future accurately, it is 

known as a deterministic model. However, the natural phenomena are not 

deterministic and are mostly under the influence of different external parameters and 

even unknown factors which can affect the accuracy of the model in the calculation 

of the component. Such models are known as probabilistic models or stochastic 

processes. Most behaviors observed in time series are the result of these stochastic 

models. In such time series, the current moment, including all the states of the 

internal component as well as the external parameters, plays the most important role 

in calculating the conditional probability distribution of the next events which leads 

us to predict the next step. 
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Figure 1:  Enrolment states for a sample course: A from 2016 to 2017. 

A: All the possible transitions and states. B: Simplified and practical version of the 

same transitions  

In some time series, the conditional probability distribution of the next event is 

static and does not change over time. This statistical equilibrium, which can be 

distinguished by constant mean and variance, is the characteristic of stationary 

stochastic models (Tsay 2005). However, in some systems, where the dynamic of the 

system is high, and we can detect a moving average in the data set, they are 

categorized as non-stationary stochastic processes. Some models are involved in 

both stationary and non-stationary processes in real-world problems. 

The Markov Chain is a series of discrete (finite and countable) values generated by 

the Markov process. This process is a stochastic process where the current state of 

the system is the only factor to predict the next state (Meyn, 2012). In other words, 

to generate the next state, past states are irrelevant if the current state is available. 

Metaphorically, we can label the Markov process as a “spiritual” approach in data 

analytics because, like most spirituality methods, the only important moment is the 

current moment and there is no recognizable pattern in the trend of events 

(stochasticity), as human life. 

There are different types of Markov Chain. In a discrete-time Markov Chain, the 

state of the system changes in discrete time intervals. Most stochastic time series 

can be considered as a discrete-time Markov Chain (Feinberg & Schwartz, 2012). In 

such a sequence of random variables, each variable     in the chain, in time    , 

the next variable in the sequence     , can take different values based on the 

conditional probability distribution of the current state of the data in the chain: 

 (     |    . If these conditional probabilities remain the same for each sequence, 

the chain is known as a stationary (homogeneous) Markov Chain (Meyn, 2012).  
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In a continuous-time Markov Chain, the system condition can change in a 

continuous-time interval and the conditional probability of the next state is not 

relevant to the current state. However, we assume that the average time interval 

among events is known and follows a pattern such as a Poisson Process (Anderson, 

2012).  

The Markov Decision Process (MDP) is another kind of Markov Chain in which an 

agent can affect the conditional probability distribution of the next event. The focus 

of the current paper is using discrete-time homogeneous Markov Chain in 

institutional research. 

Literature review 

As explained earlier, unlike the deterministic approaches, the essence of the Markov 

Chain is randomness. Enrolment, as an institutional example, is a random process 

because we cannot deterministically say that 100% of the transition of a sample 

course, is reenrolling to the same course. There is always a probability of leakage, 

re-enrolment in other courses, or leaving. The same concept is applicable for the 

course intake. Such stochasticity in institutional events makes Markovian-based 

methods as appropriate tools for institutional applications and grabs the attention of 

IR researchers. 

The University of California is one of the earliest institutions that utilized the 

Markov Chain for enrolment management (Oliver, 1968). In this research, the grade 

levels or class statuses construct the probability matrix and Oliver assumed that 

progress from a grade level to the same or another level is a random process and 

appropriate to utilize a Markov-based method. 

Utilizing Markov Chain for investigating enrolment flow in higher classification 

levels (freshman, sophomore, junior and senior) was implemented at Stanford 

University (Hopkins and Massy, 1981). They considered three states for each 

student progressing to the next iteration and construct their transition matrix based 

on these states: 1- Number of students that stay in the same class, 2- Number of 

students that progress to the next class, and 3- Number of students that leave the 

institution, including attrition or graduates. 

Yearly enrolment transition Borden and Delphin (1998) investigated the progression 

for each class level by their yearly transition matrix. They found that using the 

Markov Chain model is accurate enough to measure the student progress rate 

without relying on 6-year graduation rate models which need longer time lags. The 

current research is like Borden and Delphin (1998) for using yearly transition states. 

While they distinguished between absorbing states (drop-out or graduation) from 

non-absorbing states (class levels) in their research, they have been considered 
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together as non-absorbing states in the current research. In Markov Chain, non-

absorbing states allow transitions to other states but absorbing states do not. 

 

A narrower application of the Markov Chain is implemented to investigate how 

students in English Language Institutes (ELI) progress through STEM (Science, 

Technology, Engineering, and Mathematics) programs (Gagne 2015). In this 

research, transitional states include non-absorbing and adsorbing states (students 

who left the institute, those who graduated in STEM programs, and those who 

graduated in non-STEM programs) together. Their research revealed that the 

progress of ELI students in STEM programs is higher than non-ELI students.  

Another application of Markov-based models is in graduation time (Silver, 2016). 

He assumed that the future probability for the transition from one state, absorbing or 

non-absorbing (class level), to another state, depends on the present status only and 

there is no influence from the historical trend involved in this transition.   

Recently Austin Peay State University used Markov Chain for enrolment projection 

(Gandy and Crosby, 2019). They used student credit hours (SCH) to investigate the 

student flow from one academic term to the next. The objective of their research is 

to detect the entering and leakage points in the enrolment process. Their transition 

matrix includes 24 states for 4 classes and 4 SCH groups and they investigated the 

progress from each SCH group to another for all major classes (freshman, 

sophomore, junior and senior). Their finding helps administrators to identify 

enrolment trend and anomalies. 

As mentioned, enrolment management is the most popular application for Markov 

Chain models. The states of the models utilize various student classifications. In the 

following sections, the big picture of the proposed Markov model in enrolment 

planning is introduced and then two different applications of enrolment planning are 

introduced.  
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Figure 3:  Markov process diagram. 

A: Calculating the main Transitional probability matrix from the Actual transition 

matrix. B: Square of the probability matrix to forecast the 2
nd

 iteration probabilities 

and C: Cube of probability matrix to forecast the 3
rd

 iteration probabilities. D: Extract 

the first row of each iteration matrix to construct the final forecasting table. 

 

Enrolment planning utilizing discrete-time Markov model  

Mission and vision are the two ends of the analytics spectrum in the institutions 

which finally develop the strategic plan (Hinton, 2012).  

Conventional planning is generally based on what the members of the institutional 

community believe about the institution. However, at all levels of institutional 

planning - Strategic, Operational, and Tactical - those beliefs are supported by 

descriptive data analyses of available historical data (Hinton, 2012). But the 

question is: what is the role of predictive data analytics in institutional planning? 

And how can it be utilized for more effective strategic and operational planning? 

(Calderon & Webber, 2015). Hence the sum of each row should be 1 (100%) 

because all the possible transitions should be considered in columns and rows. 

However, this rule is not valid for the column summation. 
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An Institutional Strategic Plan should provide information about enrolment and 

student population objectives as well as the impact of changes in the enrolment 

flow. Hence, any kind of data related to enrolment, which is a periodic event, plays 

a significant role in institutional planning. Historical enrolment data can be 

represented as a time series that contains useful information.  If it is modeled by an 

appropriate method to forecast the future, then it would be able to play a significant 

role in planning the future of institutions. 

Enrolment can be considered as a discrete-time stochastic event in which the 

conditions of the present states if they are not the only effective factor for the next 

enrolment states, are the most important. Given these assumptions, and enrolment is 

an event that can be modeled by a discrete-time Markov Chain, and consequently, 

the future states can be forecast based on the current situation. To implement 

enrolment planning by predictive analytics based on the Markov Chain, we need to 

decide three important factors: 

• Identifying the transitional states;  

• Investigating the historical data for availability of the identified states, and 

• Nominating the final transitional states. 

 

The granularity level of the transitions is important. A more detailed transition 

matrix may provide higher accuracy, but in real-world applications, the availability 

of historical data at the most detailed granular level may not be possible, and this 

limitation can impose some constraints on the predictive models. This phenomenon 

is depicted in Figures 1.A & 1.B. In other words, the accuracy of the model depends 

on the tradeoff between the granularity of the transitional states and the availability 

of the data. 
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In the following sections, two samples of institutional applications in enrolment 

planning are provided. Before considering the details of the two applications, it is 

necessary to define some terms to identify the transitional states in this context. 

From the enrolment point of view, a student can possess one of the following four 

states regarding a sample course, in an academic year: 

• Commencing: The state of those students who are enrolling in a course for the 

first time in the institution; 

• Returning: The state of those students who are already enrolled and are 

returning to the same course to take the rest of the needed subjects;  

• Completion: The state of those students who have passed all the subjects and 

completed the course, or 

• Attrition: The state of those students who have dropped the course before 

completion. 
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The total possible transitions are shown in Figure 1.A. These four states can cover 

all the transitional states, by a       matrix which covers all the possible 

distributions, is known as an Actual transition matrix and is depicted in Figures 2.A. 

and 2.B. The elements in the matrix represent the actual headcounts to transit from 

one state, represented in the row header, to the other states, represented in the 

column headers, i.e.      represents the actual headcount value that transitions from 

Course-A in Year X to the same course in the following year. This value will 

generate the transitional probability      which is represented in Figure 3.B. 

Detecting the elements in the Actual transition matrix and computing the 

probabilities of the transitions (Probability transition matrix) is the core calculation 

of the Markov-based models. In some cases, the ideal transition matrix which covers 

all the possibilities, either cannot be extracted or is meaningless from a probability 

distribution point of view.  

In such a situation, simplifying the matrix based on the potentials of the real-world 

data warehouse or realistic probabilities is necessary. Figures 1.B and 2.B represent 

the realistic transitions and related Actual transition matrix respectively. As can be 

seen, the two states Completions and Attritions are merged and labeled Left. The 

reason for this simplification, caused by the difficulties in extracting the required 

data from the available data warehouse, is the lack of information for the Attrition 

state in the last row of the Actual transition matrix. Any student, who drops a course 

before completing it, and does not enroll in any other courses, will be categorized in 

the Attrition state. Hence the transition from Attrition to the other states (the last row 

of the Actual transition matrix depicted in Figure 2.A), would be zero, except for the 

last column (Transition from Attrition to Attrition). This means that the probability 

of transition from students who had dropped their courses in Year X to Attrition 

state in the next year would be 100%, which does not convey any information to the 

model. 
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The simplified version is used in this experiment. In this practical version, the two 

states, Completions, and Attritions are merged and labeled Left. The results would 

be a       Actual transition matrix shown in Figure 2.B and all the elements can be 

computed based on the available data. 

The following two sections are dedicated to the two planning applications. The 

enrolment system in both applications is modeled by the homogenous Markov 

Chain. The subjective in both applications is forecasting enrolment in different 

planning scenarios and comparing the impacts by statistical significance test.  

The first application is trend analysis of three proposed decisions in improving 

course enrolment strategy and how to detect the most effective method. The trend of 

changes of transitional probabilities resulting in different scenarios is compared to 

detect the most significant decision.  

The second application is a projection of enrolment headcount to forecast the impact 

of shrinkage in international student enrolment. Unlike the first application, instead 

of the conditional probability analysis, the actual headcount is used to forecast the 

enrolment in different scenarios, compare the results and find the critical point. 
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Application A: Measuring decision impact on course 

enrolment planning 

In course enrolment planning, a variety of possibilities can be considered in an 

action plan. However, which one has the maximum impact on the enrolment trend, 

regardless of the effectiveness of the results? Answering this question is the 

objective of this section. 

To become familiar with the decision impact analyses by a Markov model, three 

sample scenarios among different decision possibilities are selected and the impact 

of each approach is compared with the original enrolment trend based on the actual 

historical data as the basis of the forecasting process. The possible transitional states 

for a sample Course-A are as follows. 

 Commencing Course-A: The number of new students who enrolled in Course-

A for the first year. 

 Returning to Course-A: The number of students who re-enroll in the same 

course in the following year. 

 Returning to other courses: The number of students who re-enroll but in other 

courses in the following year. 

 Leaving institution: The number of students who leave the institution, either 

by completing or dropping the course 
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Based on the described transitional possibilities a set of selected sample scenarios is 

chosen. The original state and three selected scenarios to improve the course 

enrolment trend are defined as follows. 

 Original State: The actual values transitional state based on the original 

Actual transition matrix elements. 

 Scenario 1: Increase re-enrolment from the sample Course-A into the same 

course (    ), and decrease the attrition (    ), 

 Scenario 2: Increase re-enrolment from the other courses into Course-A 
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(    ), and decrease the attrition (    ). 

 Scenario 3: Increase re-enrolment from the completion of other courses into 

Course-A (    ) and decrease the attrition (    ). 

 

As explained earlier, there are numerous possibilities but experimenting on a limited 

version of the model would be adequate to observe the performance of the method. 

The process of calculating the main Transitional probability matrix and predicting 

the next iterations (enrolment periods or years in this example) is simple. This 

process is depicted in Figure 3. Based on the homogenous Markov Chain, 

multiplying the Transitional probability matrix to itself, yielding the Transitional 

probability matrix of the next periods. Analyzing the probabilities in series of 

transitional matrices of different periods would be enough for trend analysis. 

However, multiplying the Transitional probability matrix of each period to the basic 

actual vector generates the forecasted headcount for that period. Simply put, the 

square and cube of the Transitional probability matrix provides the forecast for the 

2
nd 

and the 3
rd

 year probability matrices (Figures 3.B and 3.C), and so on. The 

objective of the current experiment is to measure the impact on enrolment planning 

of a sample Course-A. The transitional probabilities from this course to the other 

three states are available in the first row of the forecasting probability matrix in each 

period which is highlighted in Figure 3. Figure 3.D shows the final table which 

contains all the projected transitional probabilities relating to the enrolments of 

Course-A. 
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Each scenario and the original state generate four transition matrices. The next step 

is applying the Markov process, mentioned above, to the four transition matrices, 

forecast the n following years, and comparing the results stored in the final 

forecasting tables (Figure 3.D).  

One of the characteristics of a homogenous Markov model is reaching a state that 

the changes in the following forecast periods are not significant. This state is known 

as the steady-state. To depict this phenomenon, 20 consecutive periods of each 

scenario, as well as the original state, are shown in Figure 4. As can be seen, the rate 

of change will gradually decrease after a couple of periods in all three enrolment 

states.  

To investigate the impact of different scenarios, we should calculate how different 

they are from the original state. Figure 4 shows a significant change in the shape of 

the graphs (maximum impact) as can be seen in Scenario 1. With the assumption of 

normal distribution of enrolment data, a statistical significance test (t-test) is utilized 

to measure the impact. The P-values, shown in Table 1, are calculated over the first 

five forecasting periods (years) which is a reasonable period for a Bachelor's Degree 

course. The smaller P-value is interpreted as the higher impact. If the P-value is less 

than 0.05, the impact is considered statistically significant and, in this application, 

belongs to the first scenario. 

Application B: Commencing shrinkage impact on student 
headcount 

Commencing enrolments in each year has a long-term impact on the institution's 

population over the next couple of years. Regarding recent changes in the 

population of commencing student cohorts, utilizing a model to forecast the student 

headcount in the following years is of interest to institutional strategic planners.  

The objective of this section is to measure the impact of international student 

shrinkage on the university population in four years. Unlike the previous 

application, the major transitional possibilities in this application are not focused on 

a specific course. As the objective is to investigate the population of a cohort 

(international students), the major transitional states have been defined as follows. 

 Commencing students: The headcount of newly-arrived international students 
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in each year, 

 Returning students: The headcount of international students who re-enroll in 

the institution to complete their courses. 

 Leaving students: The number of international students who leave the 

institution, having either completed or dropped their courses. 

 

Similar to the previous application, a limited set of possible scenarios have been 

selected to investigate the commencing shrinkage impact, as follows 

 Base-year State: The actual values transitional state of a year as base-year, 

considered as 100% of the cohort enrolment. 

 Scenario 1: Commencing shrinkage with the rate of 5% in each of the 

following years. 

 Scenario 2: Commencing shrinkage with the rate of 10% in each of the 

following years, 

 Scenario 3: Commencing shrinkage with the rate of 20% in each of the 

following years. 

 Scenario 4: Commencing shrinkage with the rate of 30% in each of the 

following years. 

 

The above scenarios and the base-year generate five transition matrices that are the 

core for a homogeneous Markov Chain to forecast the next four years for each 

scenario. The enrolment year 2018 was selected as the actual base year (considering 

actual values for C and R and Left students are available at the end of 2019). Two 

transition matrices were extracted based on the latest available actual historical data 

(from 2017 to 2018), for total and for commencing students. The transition 

probability of the three elements: Commencing, Returning, and Leaving students for 

the following four years are forecasted based on the first order, square, cube, and the 

higher power of the Transitional probability matrix (powers 1 to 4). This process 

partially is depicted in Figure 5 for the 1
st
 and the 2

nd
 year forecast. Multiply the 

base-year actual values as the initial vector (2018) to the probability matrix provides 

the year 2018 to 2019 (Figure 5.F). For generating the headcount of the year X+2 

(Figure 5.G) the square of the probability matrix is needed (Figure 5.E). The same 

process is applied for the 3
rd

 and the 4
th

 period after the base year. 

The next step is to forecast the total number of students by headcount in each of the 

four following years after 2018 as the base year. A forecasting process was 

implemented for each shrinkage scenario to enable a comparison of the effects. This 

process is depicted in Figure 6 and depicts Scenario 1: 5% shrinkage in the 

commencing headcount of international students each year.  
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It is important to consider that the estimated headcount in each year is the sum of 

Commencing students in that year and the Returning students of the previous years. 

This process is shown by highlighted items in similar colors in Figure 6. 

The results of the four scenarios can be seen in Figure 7. As can be observed, the 

increasing trend starts to decrease when the commencing international students 

reach 60% of the base-year which can be considered as an alarm point. This 

observation can be investigated and verified by the t-test P-value analysis shown in 

Table 2. The table also shows significant changes to the total headcount when the 

commencing headcount of international students reaches 60% of the base-year 

commencing headcount with the highlighted P-values in red in Table 2. 

Accuracy analysis 

Accuracy analysis is a delicate part of predictive analysis. The word delicate is used 

because accuracy can be measured from different aspects and they can show 

contradictory results. In the current research, an approach is performed on two 

categories of datasets. The approach simply extracts the transition of actual 

commencing headcounts within the base year (2012-13) and the following five years 

and compares it with the estimated headcounts for the same period. Then the 

accuracy is measured based on the sum of the all differences between the two 

vectors (actual and estimate) as the numerator, and the total actual vector as the 

denominator. The model was applied to two subcategories of commencing 

international students:  

 All levels of tertiary education (Sub degrees, Postgrad, Undergrad, and 

Research), and 

 Postgraduate and Undergraduate only. 

TABLE 2: MEASURING SHRINKAGE IMPACT BY COMPARING THE P-VALUES 

 

 

0.808 0.619 0.307 0.121

0.619 0.307 0.040 0.003

0.449 0.121 0.003 0.000

0.307 0.040 0.000 0.000
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The second category is a subcategory of the first dataset and includes a less diverse 

group of courses, compared to the highly diverse courses in the first group. The 

similarities among the courses in the second category were investigated based on the 

Pearson and Cosine similarity (Rouhi & Calderon, 2017) (Rouhi, 2018). It is 

designed in this way to investigate if there is any correlation between the diversity 

among the sub-groups and the accuracy of the predictive model. 

The results show that greater accuracy can be seen in the less diverse group of 

courses. A possible reason for this observation is the correlation of the transition 

matrix rows and columns (i.e. Commencing, Returning, Completion, and Attrition) 

with the subcategories of data in the main dataset (i.e.  Undergraduate, 

Postgraduate). The transitional states among postgraduate and undergraduate 

courses are more similar to each other than to the other group which includes all 

levels. 
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Figure 8 depicts the accuracy values of the two categories for five years. The focus 

of the chart is on transitions of the commencing international students from the 

base-year 2012-13, into the three possible states in the following, 2
nd

, 3
rd

, 4
th

 and 5
th

 

iterations (2012-14 to 2012-18) which are estimated by a homogenous Markov 

model based on the probability transitional matrix of the base-year (2012-14). 

Regardless of the more accurate results in the second category, a similar pattern can 

be seen in both categories. The accuracy is higher in the 1
st
 year estimation 

compared to the 5
th

 year estimation, and the transitions from commencing to 

commencing are higher than the transition from commencing to the other states. 

Recommendation and implication for future study 

This study was conducted on two different scales:  

 Course level including all the cohorts (domestic and international students), 

and 

 Total enrolments including all the courses (international students only). 

 

Further investigation conducted by the RMIT/Analytics and Insight team, revealed 

that the accuracy of homogeneous Markovian-based forecasting depends on the 

dynamic of the system. The more homogenous behavior of the population in the 

consecutive years yields more accurate results for homogeneous Markov Chain. Our 

accuracy analysis revealed that when the international student population was 

segregated into two major groups: Research and Class-based (Postgraduate and 

Undergraduates), the accuracy of the model increased, because the dynamic of 

transitional probability in Research-based courses is not like the Class-based courses.  

A Non-homogeneous Markov Chain is an alternate model which is under 

investigation by RMIT/Analytics and Insight team. Unlike the homogenous model, 

non-homogeneous models need historical data to extract the most appropriate 

transitional probabilities for each period. The primary analysis shows non-

homogeneous can provide more accurate results for course enrollment forecasts. 

The reason is rooted in the dynamic of change in sequential periods. The transitional 

probabilities from the first year to the second and from the first year to the third (and 

subsequent) fluctuate significantly. Such a dynamic is also related to the length of 

courses. 

Some technical debates in our team encouraged the author to make a technical 

recommendation about the method for matrix multiplication. Matrix multiplication 

plays an important role in calculating Markov Chain. Multiplying transition matrices 

to provide the next iteration transition matrices are always involved with     

matrix multiplications. However, in estimating the headcounts we generally need to 
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multiply an initial vector to the     Transitional probability matrix. The 

conventional approach considers an     vector as the initial vector. During the 

current study, the author noticed that the conventional homogeneous approach can 

be substituted by multiplying an     matrix of actual values (the source of the first 

Transitional probability matrix) as the initial matrix to an     Transitional 

probability matrix. The result of the second approach is an     forecasted value 

that the sum of the column would be the same as the results of the conventional 

method (    initial vector to the     Transitional probability matrix). Although 

the second approach is more complicated, it provides more details in the      

result matrix that may be useful in some applications. However, the current study 

experiments both approaches and provides the same results. Thus, for simplicity, we 

explained and demonstrated the conventional approach in the figures. However, the 

applicability of this approach for the Non-homogeneous model is under 

investigation. 

The last recommendation is about the accuracy analysis method. Since comparing 

actual and estimated vectors are involved in measuring the accuracy, the 

conventional approaches consider all the vector elements to provide a holistic error 

measure similar to the one that used in this study (some of the deviation of all the 

forecasting vector elements with the historical actual values) or the Mean Square 

Errors (MSE and RMSE) (NCVER 2016, Mark and Karmel 2010). However, 

further investigation by our team reveals that the sum of the values is fixed in the 

estimated vectors; hence the forecasted values are interdependent to each other, and 

increasing one will affect the other figures in the vector. In such a situation, 

selecting the maximum error values between the two vectors can be considered as 

an appropriate representative of the total vector deviation. Compared to the previous 

method, this approach prevents evaluation of the error and enables us to provide a 

lower and more realistic error rate. 

Conclusion 

International students provide a significant cohort among Australian institutions. 

The quality and quantity growth of South East Asian institutions can cause 

significant fluctuations in the student demographics in Australian universities. In 

this situation, robust strategic planning, by utilizing advanced predictive analytical 

techniques, contrasted with conventional approaches, can provide not only a more 

realistic organizational vision but also more accurate operational and tactical 

objectives. 

The availability of rich time-series data in institutional data warehouses provides a 

foundation for a wide range of tools and techniques for predictive analytics. In this 

paper, a classical artificial intelligence tool, the Markov Chain, is introduced to 
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estimate the next state based on the available current data. The core concept of 

Markov-based models lies in the following items:  

 Distinguishing the most appropriate Transitional states of the current 

system,  

 Extracting Actual transition matrix elements from the latest available 

historical data, and 

 Computing the Transitional probability matrix which represents the 

probability distributions among the states.  

 

A homogenous Markov Chain, simply by computing 2
nd

, 3
rd,

 and higher powers of 

the probability matrix, provides the estimation of the 2
nd

, 3
rd,

 and later periods of the 

system.  In this research, a Markov model is utilized for two applications involved 

in enrolment planning. The first application shows how we can measure and 

compare the enrolment planning scenarios. The second application is more 

complicated and shows how to estimate the impact of international commencing 

enrolments shrinkage over total student headcount in the next four years. The 

significance of the impact of different scenarios has been measured by t-test. An 

accuracy analysis is also provided based on the actual historical data compared to 

the estimated values provided by the model. The results show the accuracy of the 

model will decrease when estimating longer periods. However, breaking down the 

large datasets into cohorts with more homogenous patterns, can reduce the diversity 

in the data and improve accuracy. 
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